UtilsConvertEllipseElevationAngleToPhaseAngle Method |
Converts the elevation angle eta of the ellipse with semi axes a
and b, the orientation angle phi into the phase angle theta.
Namespace: RAYLASE.Marker.VectorGraphicElementAssembly: RAYLASE.Marker.VectorGraphicElement (in RAYLASE.Marker.VectorGraphicElement.dll) Version: 2.19.0
Syntaxpublic static double ConvertEllipseElevationAngleToPhaseAngle(
double a,
double b,
double phi,
double eta,
bool isRad
)
Parameters
- a Double
- semiaxis a of the ellipse
- b Double
- semiaxis b of the ellipse
- phi Double
- orientation angle of the ellipse
- eta Double
- elevation angle of a point on the ellipse
- isRad Boolean
- if false, the angle is converted into deg and the result is
returned in deg as well
Return Value
Doublethe phase angle theta to get the same point on the ellipse
as under the elevation angle eta.
Remarks
theta is the angle to put into the ellipse equations to get the
same point on the ellipse. For the definitions see the first sketch
in
ConvertEllipsePhaseAngleToElevationAngle(Double, Double, Double, Boolean).
To take the orientation angle into account the general equations
of the ellipse's coordinates are used:
x = a*cos(theta)*cos(phi) - b*sin(theta)*sin(phi)
y = a*cos(theta)*sin(phi) + b*sin(theta)*cos(phi)
The elevation angle eta is atan(y/x). Solving the
equation tan(eta) = y/x for tan(theta) leads to
a*tan(eta)*cos(phi)-a*sin(phi)
tan(theta) = ------------------------------
b*(tan(eta)*sin(phi)+cos(phi))
See Also